Fisher & Paykel Healthcare Inspired and world-leading healthcare solutions

INVESTOR DAY, SYDNEY 13TH OCTOBER 2015

10:00am	Welcome	Marcus Driller (Investor Relations & Corporate Affairs Manager)
	Changing Demographics Creating Opportunities	Michael Daniell (Managing Director & CEO)
	Improving Care and Outcomes	Lewis Gradon (Senior VP - Products & Technology, CEO Designate)
	AIRVO & Optiflow – World-Leading Technology	Chris Crone (AIRVO and Optiflow Marketing Manager)
	Optiflow – A Growing Body of Evidence	Geraldine Keogh (Clinical Research Manager, RAC)
	Humidify to Protect during Surgery	Michael Blackhurst (Product Group Manager, Surgical)
12:00pm	Lunch Break	
12:30pm	Effective OSA Patient & Data Management	Fiona Cresswell (Marketing & Clinical Manager, OSA)
	Mask Matters Most	Andrew Somervell (General Manager, Product Groups)
	Working More Closely with our US Hospital Customers	Paul Shearer (Senior VP - Sales & Marketing)
	Closing Comments	Michael Daniell (Managing Director & CEO)
2:00pm	Finish	

Time will be made available at the end of each presentation specifically for questions and answers.

Changing Demographics Creating Opportunities

Michael Daniell (Managing Director & CEO)

Health Spending Growing 5%-7% Per Year

Total Expenditure on Health (US\$/capita)¹

Demographics Driving Growth

Population age and weight both increasing

US population 65 years+ to grow ~80% over next 20 years²

US males 60 - 74 years, average weight increased 0.4 kg/year since 1960³ 60% of US healthcare cost is after age 65 years⁴

Developing markets increasing healthcare spending

China healthcare expenditure increased 19% in 2012, expected to triple by 2020⁵

US Population over age 65 (millions)

Typical Hospital Cost Breakdown

Lower Care Intensity = Lower Cost

Mean Annual COPD-Related Medical, Pharmacy, and Total Costs by Care Intensity Cohort⁷

Improving Care and Outcomes

Lewis Gradon (Senior VP - Products & Technology, CEO Designate)

Consistent growth strategy

- Improving care and outcomes
- Reducing cost to the healthcare system

Increase

- Effectiveness of care
- Efficiency of care

Reduce

- Intensity of care
- Healthcare system cost

- Four key pillars:
 - Continuous product improvement
 - •

More devices for each patient

Serve more patient groups

Increase international presence

Market Opportunity and Patient Groups

OBSTRUCTIVE SLEEP APNEA / HOMECARE

Invasive Ventilation

ACTUAL VALUE AND A CONTRACT

Invasive Ventilation

- Almost always in the Intensive Care Unit (ICU) or Neonatal Intensive Care Unit (NICU)
- Patients are intubated
- Generally unconscious
- Ventilator breathes for the patient

The Intubated Airway

- Majority of inspired gas conditioning occurs in the upper airways
- Inadequate humidity is associated with secretion clearance complications

- Need to deliver gas at physiologically normal levels
 - 37°C body core temperature
 - 44mg/L 100% saturated

Effect of Humidity and Temperature on Mucus Transport

Technology Advantage

Evaqua 2[™] Breathing Circuits

Uniquely designed with **F&P's MicroCell**[™] and **Evaqua**[™] **technology**, Evaqua 2 is an advanced breathing circuit which aims to increase the effectiveness of patient care through an easy-to-use system.

Magnified view of expiratory tube wall

Patient Groups

Certain common medical conditions may require invasive ventilation,⁸ including:

ADULT

- Acute obstructive disease, including acute severe asthma
- Burns and smoke inhalation, including surface burns and inhalation injury
- Cardiopulmonary problems, including congestive heart failure
- **Chest trauma**, including blunt chest injury, penetrating injuries and rib fractures
- Chest wall deformities, including severe obesity
- Chronic obstructive pulmonary disease, including emphysema, chronic bronchitis, asthma and cystic fibrosis
- Chronic restrictive pulmonary disease, including pulmonary fibrosis

- Fatigue/atrophy, including muscle overuse and disuse
- Head/spinal cord injury, including pulmonary edema and brainstem injury
- Neuromuscular disease, including polio myelitis, muscular dystrophy, amyotrophic lateral sclerosis (ALS), malnutrition, cancer and infections
- **Postoperative conditions**, including thoracic and cardiac surgeries and apnea from unreversed anesthesia

NEONATAL

• **Respiratory distress syndrome** (typically due to preterm birth)

Noninvasive Ventilation

Noninvasive Ventilation

- Generally in HDU / ICU / NICU / ED
- Ventilator assists patient's breathing through a mask
- Success improved by comfort, tolerance and compliance

Patient Tolerance

NIV can be an uncomfortable therapy that some patients find difficult to tolerate

• Up to 70% of NIV patients experience adverse effects⁹

AARC Clinical Practice Guideline 2012 Recommendations¹⁰

• Active humidification for NIV is suggested to improve adherence and comfort

Leading Technology

Patient Groups

Why would somebody require noninvasive ventilation?¹¹

ADULT

- Chronic respiratory failure
- Chronic obstructive pulmonary disease
- Cystic fibrosis
- Neuromuscular disease
- Amyotrophic lateral sclerosis
- Obesity hypoventilation syndrome
- Restrictive Thoracic Disorders
- Duchenne muscular dystrophy

NEONATAL

• Respiratory distress syndrome (typically due to preterm birth)

Hospital Respiratory Support

Displacing Conventional Oxygen Therapy Devices

Optiflow - A Disruptive Therapy

Reduction of Dead Space

Dynamic Positive Airway Pressure

- Pressure dynamically changes depending on breath and flow
- Inspiration is easier
- Increased expiratory pressure leads to prolonged expiration
- Promotes slow, deep breathing

Compared to unassisted breathing tidal volume increased and respiratory rate reduced as flow increased

Tidal volume (V_T) comparison¹²

Adapted from Mündel et al. 2013

Increased airway pressure was significantly correlated with increased lung volume of 25.6%¹³

Clinical Outcomes

Optiflow is associated with:

ADULTS:

- REDUCED intubation¹⁴
- REDUCED re-intubation^{15, 16, 17}
- REDUCED bilevel ventilation¹⁵
- REDUCED nursing workload¹⁶
- INCREASED ventilator free days¹⁴
- IMPROVED comfort & patient tolerance¹⁵
- IMPROVED compliance¹⁵

PAEDIATRICS:

- REDUCED intubation¹⁸
- REDUCED length of stay¹⁹
- REDUCED respiratory distress²⁰

NEONATES:

- Noninferiority with nasal CPAP²¹
- REDUCED nasal trauma^{22, 23}
- REDUCED respiratory distress²⁴

Reducing Length of Stay

RESPIRATORY CARE

High-Flow Nasal Cannula in a Mixed Adult ICU

Kristina A Gaunt MD, Sarah K Spilman MA, Meghan E Halub MD, Julie A Jackson RRT-ACCS, Keith D Lamb RRT-ACCS, and Sheryl M Sahr MD MSc

Gaunt et al. 2015²⁵

STUDY

- Supplemental oxygen ineffective
- Transitioned to Optiflow
- o 145 heterogeneous patients

Early Optiflow associated with:

- Decreased length of stay in ICU
- Decreased length of stay Post-ICU
- Reduced incidence of adverse events

"Every 1-day delay to HFNC increases ICU stay by one half-day. This suggests that first-line HFNC therapy may play a significant role in reducing ICU and hospital stay."

Patient Groups

What patient groups could benefit from Optiflow?

ADULT

- o Asthma
- Atelectasis
- o Bronchiectasis
- Bronchitis
- o Burns
- Carbon monoxide poisoning
- Chest trauma
- OPD

- Community acquired pneumonia
- Emphysema
- Palliative Care
- Pneumonia
- Pulmonary embolism
- Respiratory compromise
- Viral pneumonia (H1N1)

NEONATAL

• Infant Respiratory Distress

These patients are located throughout the hospital – in the ICU, NICU, PICU, SICU, HDU, Ward and ED

Home Respiratory Support

An other states of the second second second second

Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a lung disease which is commonly associated with smoking

- Emphysema and chronic bronchitis are both forms of COPD
- Chronic respiratory disease, primarily COPD, is the third leading cause of death in the US²⁶
- 6% of US adults have been diagnosed with COPD²⁷ (~15 million people)
- 4% 10% COPD prevalence worldwide²⁸ (~400 million people)

Surgical Humidification

Surgical Humidification

- Current standard of care is dry CO₂ gas to the surgical site
- Causes evaporation and cooling
- Humidification reduces risk of complications, hypothermia, adhesion and infection

Surgeries That May Benefit from Humidification

Laparoscopic and open surgeries

- Cardiovascular-Thoracic Procedures including aneurism repair, coronary artery bypass and heart valve replacement
- General Procedures including gastric bypass, appendectomy
- Obstetric-Gynecologic Procedures including hysterectomy
- o Organ-tissue transplants
- Urologic procedures including nephrectomy and prostatectomy

Obstructive Sleep Apnea

Obstructive Sleep Apnea

Temporary closure of airway during sleep

- 2% 7% OSA adult prevalence²⁹
- 70%–80% of those affected remain undiagnosed
- Prevalence increases with age and obesity
- Estimate >50 million people in developed countries

Looking Forward Next 12-18 Months

CONTINUOUS PRODUCT IMPROVEMENT

- Introduction of new products

 Optiflow+ nasal cannula, myAIRVO 2, AirSpiral tube, UPS transport system, Eson 2 CPAP mask, Humigard surgical humidifier controller
- New humidifier controller, consumables and NIV mask to be released
- A new OSA platform, including masks, flow generators and informatics, to be released

MORE PRODUCTS FOR EACH PATIENT

- Opportunity to add active humidification to NIV patients
- Growing body of clinical evidence showing applicability for use of Optiflow outside the ICU

SERVE MORE PATIENT GROUPS

- Growing body of clinical and economic evidence that surgical humidification provides benefit during different surgical procedures
- Opportunity for myAIRVO to displace use of long term home oxygen therapy devices

INCREASE OUR INTERNATIONAL PRESENCE

- Direct hospital sales force in the US
- Adding to sales teams in existing markets
- Increased focus in emerging markets as spend on healthcare increases
- Lead changes in clinical practice

Key Points

10 million patients treated last year using our medical devices

100 million patient opportunity

Market could be 200 million patients per year in 10 - 15 years given demographics

Exciting product pipeline

Consistent growth strategy

Optiflow & AIRVO World-Leading Technology

Chris Crone (AIRVO and Optiflow Marketing Manager)

Product Showcase

From High-Acuity to Low-Acuity

Optiflow+

COMFORT + CONFIDENCE

- Comfort for patients drives compliance for better outcomes
- Confidence for clinicians from thoughtful design and robust research
- Three sizes
- Stable and versatile
- Part of a system

Optiflow+

Technology Spotlight

Evaqua[™] technology reduces formation of mobile condensate ... reducing risk of infection and associated costs

Optiflow Junior

Effective, gentle, easy

• Effective

Delivers the flows that the clinician needs

• Gentle Facilitates development care

• Easy Simple for caregivers

The Previous "State of the Art"

- Designed for adults
- Difficult to fit and secure
- Added nurse workload means increased costs

Technology Spotlight

Wigglepads™

Evaqua[™] flexi-tube

Technology Spotlight

Designed using Computational Fluid Dynamics (CFD)

Optiflow Junior

- Effective, Gentle, Easy
- Designed as part of a system
- Enhancing the therapy to improve outcomes

AIRVO 2 - A Purpose-Built System

- A purpose-built system for delivering Optiflow therapy
- World-leading humidification and flow generation technology
- Versatile and mobile

Combines:

- Standalone humidifier
- Blender / Flow source
- Oxygen analyser

into a single, powerful, user-friendly device

Oxygen analyser

- Ultrasonic technology
- Integrated into AIRVO
- No calibration, maintenance or replacement required
- Contributes to system-level safety with integrated alarms.

AirSpiral

AirSpiral tubes

Conventional breathing tubes

- Unique
- Up to 96% less condensate
- Improved therapy efficacy
- Reduced clinician workload

Technology Spotlight

Integrated temperature sensors

- Proprietary technology
- No need for external sensors or probes
- Saves preparation and reprocessing time

AIRVO Mobility

- Continuous power means continuous therapy
- AIRVO mobility solution simplifies care
 - Reduces workload and costs
- Transportable throughout the

In Summary

Optiflow – A Growing Body of Evidence

Geraldine Keogh (Clinical Research Manager, RAC Product Group)

Optiflow Clinical Evidence

Growing body of evidence now demonstrates that nasal high flow is an effective treatment for patients with respiratory compromise

Clinical Evidence - Adult

Number of NHF Publications

Clinical Evidence – Adult (ICU)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Respiratory and Critical Care Medicine®

ORIGINAL ARTICLE

Nasal High-Flow versus Venturi Mask Oxygen Therapy after Extubation Effects on Oxygenation, Comfort, and Clinical Outcome

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery A Randomized Clinical Trial

Reduction in 90-day Mortality

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Frat et al. 2015 14

- Randomised controlled trial, 23 intensive care units, France & Belgium
- o 310 patients
- Optiflow compared with face mask oxygen and noninvasive ventilation to prevent the need for intubation

- Optiflow reduced the need for mechanical ventilation in the most sick patients
- Increased number of ventilator-free days
- Halved 90-day mortality

Improved Oxygenation & Greater Comfort

ORIGINAL ARTICLE

Nasal High-Flow versus Venturi Mask Oxygen Therapy after Extubation Effects on Oxygenation, Comfort, and Clinical Outcome

Maggiore et al. 2014¹⁵

STUDY

- Randomised controlled trial, 2 intensive care units, Italy
- o 105 patients
- Optiflow compared with face mask oxygen after extubation

Optiflow led to significantly improved oxygenation, greater comfort and fewer patients required reintubation or NIV

Lowers Nurse Workload

JANA The Journal of the American Medical Association

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery A Randomized Clinical Trial

Stéphan et al. 2015¹⁶

- Non-inferiority trial, 6 intensive care units, France
- o 830 patients
- Optiflow compared with noninvasive ventilation (BiPAP) after extubation

- Optiflow resulted in a similar rate of reintubation as BiPAP
- Significant advantages:
 - Less skin breakdown
 - Lower nurse workload (fewer interface displacements)

Similar Rate of Reintubation as NIV

High flow conditioned oxygen therapy for prevention of reintubation in critically ill patients at high risk for extubation failure: a multicenter randomised controlled trial

Hernandez et al. 2015¹⁷

- Noninferiority trial, multi-centre, Spain
- o 603 patients
- Optiflow compared with noninvasive ventilation after extubation
- Critically ill patients (heart failure, COPD, obesity, prolonged invasive ventilation)

- Optiflow resulted in a similar rate of reintubation as noninvasive ventilation
- Results presented at ESICM Congress, Berlin, 7 October 2015

Fewer COPD Exacerbations

EUROPEAN RESPIRATORY *journal*

Number of exacerbations in COPD patients treated with nasal high flow heated and humidified oxygen

Storgaard et al. 2015 30

- Randomised controlled trial, Denmark
- o 86 patients, COPD
- Optiflow compared with Long Term Oxygen Therapy (LTOT)

- Interim analysis showed patients treated with Optiflow had significantly:
 - fewer COPD exacerbations; and
 - less number of hospital admissions

Clinical Evidence

• Demonstrated efficacy in neonates with respiratory compromise

F&P Optiflow[™] junior

• Increasing evidence supporting the use of nasal high flow in older infants

Clinical Evidence

Growing body of evidence

- >90 papers on NHF published in neonatal and paediatric population
- >15 papers focus on paediatric population

NHF PAPERS PUBLISHED FROM 2000-2014 (NEONATAL AND PAEDIATRIC)

Fisher & Paykel

Decrease in Need for Intubation

Use of High-Flow Nasal Cannula Support in the Emergency Department Reduces the Need for Intubation in Pediatric Acute Respiratory Insufficiency

Wing et al. 2012¹⁸

STUDY

- Retrospective study, US
- o 838 infants, bronchiolitis
- Determined whether Optiflow could decrease need for intubation

 Optiflow led to a 50% decrease in need for intubation and mechanical ventilation

Improves Gas Exchange

Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study

Milési et al. 2014²⁰

STUDY

- Physiological study, PICU, France
- o 21 infants, bronchiolitis
- Investigated flow rate and work of breathing

 Optiflow generated enough airway pressure to improve gas exchange

PICU

-mfn

J~

HOME

 Decreased work of breathing by ~50% and led to a rapid improvement in the respiratory distress

Potential for Substantial Cost Savings

High-flow nasal cannula oxygen therapy for infants with bronchiolitis: Pilot study

Mayfield et al. 2014³¹

- Pilot study, paediatric ward, Australia
- o 94 patients, bronchiolitis
- Optiflow compared with standard low flow oxygen

- Demonstrated that Optiflow use in paediatric ward is safe
- Using Optiflow treatment in paediatric wards may result in substantial cost savings, without impact on safety of patient care

Large Multi-Centre RCT In Progress

High Flow Nasal Cannula Treatment for Viral Bronchiolitis in Infants, a Randomised Controlled Trial

Schibler et al.

STUDY

- Multi-centre, randomised controlled trial, Australia & New Zealand
- o 1,400 infants
- Optiflow compared to low flow oxygen therapy

 Comparing transfer rate from regional hospital to tertiary centre

Consensus of Evidence - Infant

Surgical Humidification

Michael Blackhurst (Product Group Manager, Surgical)

Current Standard of Care

HumiGard - Latest Surgical System

Technology

- Plug and play for ease of use
- Performance
- Patented improvements

A full suite of accesses for a wide variety of mounting equipment

Hypothermia – Remains an Issue in Surgery

Did you know that hypothermia can lead to a:

- 4-fold increase in mortality³³
- 6-fold increase in stroke³³
- 3-fold increase in surgical site infections³⁴

Maintaining Normothermia³⁵

Control

Cold, dry

AT THE START OF INSUFFLATION

AFTER TWO HOURS OF INSUFFLATION

Warm, humidified

Maintaining Normothermia

Standard warming compared to standard warming with additional insufflation of humidified CO₂³⁶

Standard warming + humidified CO₂ microclimate

Standard warming (forced air blankets, warmed fluids, insulation of limbs and head)

A reduction in SSI rate from 12.1% to 4.7% with the use of warm, humidified CO_2 during laparoscopic colorectal surgery has been reported³⁷

Surgical Humidification mechanisms of action to help protect against SSI's include:

- Protecting from operative hypothermia³⁴
- Protecting from bacterial growth³⁸
- Protecting the open wound from contamination, deflecting airborne particles³⁹
- Increasing tissue oxygenation⁴⁰

Reduction in Costs Per Patient

- In laparoscopic colorectal resections: a retrospective case study of 252 patients
- o 1:1 ratio before and after adoption of HumiGard™
- SSI rate dropped from 12.1% to $4.7\%^{37}$

- York Health Economics Consortium developed a model investigating laparoscopic and open surgery, on a 70:30 ratio
- Average spend to treat post-op complications is £43,759/100 patients
- With use of HumiGard this drops to £23,567/100 patients⁴¹

SSI RATE FROM 12.1% TO 4.7%

Survival – Karolinska Institute

- Presented at European meeting of ESCP Dublin 23-25 September 2015
- Insufflation of warm humidified carbon dioxide into the open wound significantly increases wound and core temperatures
- A small end-of-operation temperature difference between final core and wound edge temperature was positively associated with patient survival in open colon surgery

Outcomes - All Related to 'First Principles'

"Tumour cells rapidly fill the spaces left by the mesothelial cells, suggesting that the tumour cells have a strong preferential affinity for the basement membrane. Tumour cells that do invade then proliferate into the connective tissue"⁴²

National Guideline Endorsement

NICE National Institute for Health and Care Excellence

- Selection of HumiGard for a Technology Guideline in the Medical Technology Evaluation Programme by NICE.
- Also considered for the 'Inadvertent Perioperative Hypothermia' guideline by NICE
- Potential to accelerate rate of adoption

WARM HUMIDIFIED CO₂ **REDUCES CELLULAR** DESICCATION AND **EVAPORATIVE** COOLING **REDUCES RISK OF HYPOTHERMIA**⁴⁴ REDUCES RISK OF SURGICAL SITE INFECTIONS (SSI) 34 REDUCES RISK OF TUMOUR METASTASIS* 45, 43 REDUCES ECONOMIC COST PER PATIENT 37, 46-48

*as shown in an animal model

Effective OSA Patient & Data Management

Fiona Cresswell (Marketing & Clinical Manager, OSA Product Group)

• Stylish and Smart

- User-friendly with a simple menu system
- 3 leading clinical technologies

Our Informatics Platform

Proactive Patient Management

PATIENTS O	ONTACTS DEVICES	REPORTS				DOWNLDA	AD AN INFOUSE 🤇 🕻 🖬
Dashboard Events	Rominders			Search P R	ofme by Reg	zion 💌	
Patient Name	Device Serial Number	Initial Setup Date	Last Usage	Compliant	Compliant Rate		HELP
Rodger Barrow	120810217406	19 Sep 2012	12 Aug 2013	Compliant	100% (30 Days)	Hide Report	Dashboard Overview Dashboard
Jim Smith	101109031158	04 Sep 2011	04 Jan 2012	Compliant	100% (30 Days)	Hide Report	Symbols Download an
Declan Smith	120829223555	18 Dec 2012	28 Feb 2013	Compliant	97% (30 Days)	Hide Report	Patient Reports
Benjamin Adams	120609198436	21 Nov 2012	03 Sep 2013	Compliant	90% (30 Days)	Hide Report	Hide a Pallent Browser
Call Hawkins	121108252407	22 May 2013	19 Jul 2013	Compliant	90% (30 Days)	Hide Report	Compatibility
Kevin Zhang	120808216680	22 Dec 2012	25 Apr 2013	Compliant	83% (30 Days)	Hide Report	
Ben Casse	40422426909	24 Jun 2014	26 Jun 2014	Non-Compliant	0% (3 Days)	Hide Report	
Andrew Smith	120512187294	24 Apt 2009	27 Jul 2012	Non-Compliant	7% (30 Days)	Hide Report	
Tony Mu	111207145675	30 Mar 2012	03 Jul 2013	Non-Compliant	43% (30 Days)	Hide Report	
Rebecca Stewart	121213262570	11 Jun 2013	10 Jul 2013	Non-Compliant	57% (30 Days)	Hide Report	
Richard Scott	111101132418	15 Dec 2011	08 Oct 2013	Non-Compliant	67% (30 Days)	Hide Report	

Managed Data Transfer

F&P InfoSmart[™]Web

Hi

In order to continue uninterrupted insurance coverage for your CPAP therapy you need to upload your CPAP data to us on a regular basis. The process for this is simple.

STEP 1. Insert into Computer

When requested by your healthcare provider, remove the InfoUSB from your CPAP device and insert it into the USB port of a computer. A small light illuminates when connected to your computer. If the light does not illuminate, please turn the stick around.

Windows 8

Launch the Windows App

InfoUSB. Install this free

A PC or tablet running

connection are required.

Windows 8 and an Internet

Store and search for

and run InfoUSB.

STEP 2. Install InfoUSB Application

Mac

Launch the Mac App Store and search for InfoUSB. Install this free application. Upon successful installation, open the Launchpad and run installation, open the app InfoUSB.

A Mac running OSX 10.7 or later and an Internet connection are required.

Windows PC

Click on the Start button and open My Computer. Navigate to the drive called application. Upon successful FPHCARE. Open this folder and double-click on the Setup.exe file. Follow the on-screen instructions. Upon successful installation of the InfoUSB application, the message in Step 3 will appear.

> A PC running Windows XP or later and an Internet connection are required.

Simple Workflows

P InfoSmai		0.0				Welcome Ben Cas	se = 🛛 🕐 Log
PATIENTS CON	TACTS	DEVICES MC	DEMS REPOR	RTS		DOWNLO	AD AN INFOUSE
ashboard Events	Reminders	D.					
_				Search P	Refine by	Region 🔻	
atlent Name	Devi	ce Serfal Number	Initial Setup Date	Last Usage	Compliant	Compliant Rate	
Jesse Dijkstra	Ũ	120101994324	11 Mar 2013	03 May 2013	Compliant	100% (30 Days)	Hide Report
Steve Hutchings	9	130101999123	01 Jan 2010	10 Jun 2012	Compliant	97% (30 Days)	Hide Report
Samuel James	9	111003121968	12 Dec 2011	20 Jul 2013	Compliant	97% (30 Days)	Hide Report
Andrew Thompson	Ţ	110629104793	05 Jun 2015	28 Jul 2015	Compliant	90% (30 Days)	Hide Report
Joshua Campbell	Ũ	110127049717	12 May 2011	20 Dec 2012	Compliant	77% (30 Days)	Hide Report
Jared Scott	Ū	150303990036	03 Mar 2015	01 Apr 2015	Compliant	77% (30 Days)	Hide Report
Gareth Davies	Ū	100914019673	11 Dec 2013	05 Oct 2015	Non-Compliant	0% (30 Days)	Hide Report
Ben Casse	4	140422426872	13 May 2014	17 Jun 2014	Non-Compliant	10% (30 Days)	Hide Report
Simon Smith	Ũ	110401071817	17 Apr 2012	04 May 2012	Non-Compliant	33% (18 Days)	Hide Report
Mark Hopkins	Ū	121123257223	09 Mar 2013	18 Jul 2013	Non-Compliant	40% (30 Days)	Hide Report
Samuel Holmes	Q	150525990002	26 Mar 2015	20 Apr 2015	Tracking Ok	100% (26 Days)	Hide Report
Lucia Moles	۵	150415990031	14 Feb 2015	11 Mar 2015	Tracking Ok	100% (26 Days)	Hide Report

Physician Collaboration

&P InfoSmar	t ™Web				Welcome Ben Cas	se • 🛛 🔿 🕇 Logou
	TACTS DEVICES M	DOEMS REPOR	RTS		DOWNLO	IAD AN INFOUSE 🕻 🖪
Dashboard Events	Reminders					
			Search P	Refine by	Region 🔻	
Patient Name	Device Serial Number	Initial Setup Date	Last Usage	Compliant	Compliant Rate	
Jesse Dijkstra	120101994324	11 Mar 2013	03 May 2013	Compliant	100% (30 Days)	Hide Report
Steve Hutchings	130101999123	01 Jan 2010	10 Jun 2012	Compliant	97% (30 Days)	Hide Report
Samuel James	111003121968	12 Dec 2011	20 Jul 2013	Compliant	97% (30 Days)	Hide Report
Andrew Thompson	110629104793	05 Jun 2015	28 Jul 2015	Compliant	90% (30 Days)	Hide Report
Joshua Campbell	110127049717	12 May 2011	20 Dec 2012	Compliant	77% (30 Days)	Hide Report
Jared Scott	150303990036	03 Mar 2015	01 Apr 2015	Compliant	77% (30 Days)	Hide Report
Gareth Davies	100914019673	11 Dec 2013	05 Oct 2015	Non-Compliant	0% (30 Days)	Hide Report
Ben Casse	<u>م</u> 140422426872	13 May 2014	17 Jun 2014	Non-Compliant	10% (30 Days)	Hide Report
Simon Smith	110401071817	17 Apr 2012	04 May 2012	Non-Compliant	33% (18 Days)	Hide Report
Mark Hopkins	121123257223	09 Mar 2013	18 Jul 2013	Non-Compliant	40% (30 Days)	Hide Report
Samuel Holmes	150525990002	26 Mar 2015	20 Apr 2015	Tracking Ok	100% (26 Days)	Hide Report
Lucia Moles	150415990031	14 Feb 2015	11 Mar 2015	Tracking Ok	100% (26 Days)	Hide Report
Tracking3 SampleData	150414990030	13 Feb 2015	10 Mar 2015	Tracking Ok	100% (26 Days)	Hide Report

Remote Prescription Management

F&P

Fisher&Pavke

F&P InfoUSB

÷

P

Scalable to Enterprise

Fisher & Paykel

Comprehensive Patient Reports

Time Of Night

John Smith - Patient Report | 4

Iohn Smith - Patient Report | 3

Easy Integration

Mask Matters Most

Andrew Somervell (General Manager, Product Groups)

F&P OSA Masks

- Market leading mask technology
- Unique, patented designs
- Mask Matters Most
 - Masks are key to compliance

F&P Pilairo™ Q

Ground-breaking

- Soft silicone AirPillow seal
- Choice of two headgear
- First manufacturer to come out with a single strap
- Diffuser to mitigate noise and draft

F&P Eson™

Set the standard for simplicity and ease-of-use

- Unique RollFit[™] Technology
- Three key components headgear, seal and frame
- One frame fits 3 seal sizes
- Diffuser to mitigate noise and draft

F&P Simplus™

Full Face

Award-winning Full Face mask

- Unique RollFit™ Technology
- Recognised for seal performance and ease-of-use
- Comfortable seal and headgear

Introducing...F&P Eson[™] 2

Confidence comes easy

F&P Eson™ 2 – Get Ready for Easy

- New RollFit[™] seal
- Intuitive, easy to use headgear
- Long life washable diffuser
- Introducing VisiBlue[™], the use of colour cues to assist with mask use and care

Confidence comes easy with Eson 2...

...because Eson 2 has been designed to meet the needs of patients and sleep professionals, at every important milestone in the CPAP therapy journey

Working More Closely with our US Hospital Customers

Paul Shearer (Senior VP - Sales & Marketing)

- 1 US Opportunity
- 2 Why the Distribution Change?
- **3** Our Customers
- 4 Business Transition

Total Expenditure on Health (US\$/capita)⁴⁹

US Healthcare costs are increasing at a rapid rate

- US Healthcare costs 18% of GDP⁵⁰
- ~\$1 trillion hospital spend⁵¹
- ~100,000 ICU beds⁵²

FPH Opportunity - Drivers of Growth

Affordable Care Act 2010 ("Obamacare")

- Expanded insurance coverage
- CMS Reimbursement linked to quality of care
- Hospital Value Based Purchasing (VBP): Incentives for clinical practice and patient experience improvements⁵³

Increasing prevalence of obesity

- 2012: 32% of the US population is obese⁵⁴
- 2030: 42% of the US population is obese⁵⁵

Aging demographics

- 2015: 15% of the US population older than 65⁵⁶
- 2030: 20% of the US population older than 65⁵⁶

Why? Our Strategic Rationale

- Control sales process
- Sales focus on FPH products
- Develop new opportunities
- Improve care and outcomes

Why? Hospital Distributor Acquired

- Hospital Distributor acquired
- Created uncertainty
- Decision made to go direct
- Alignment with FPH direct market strategy

Customers - New Channel and Customers

Customers - Product Distributor's Role

- Consolidate products and deliveries
- Provide just in time inventory
- Closely aligned with Hospitals
- Critical to the Hospital's supply chain
- Fees paid to Distributors by Manufacturers and Hospitals

Customers - FPH Distribution Partners

National Distribution

Other

• Regional distribution and IDN self distribution

Customers - Group Purchasing Organisations' Role

- Represent ~98% of US hospitals
- Combine the buying power of their members
- Negotiate standardised pricing and contract terms
- Offer consulting, data and technology programs

Customers - GPO Process

Customers - Estimated GPO Market Share

Market Share⁵⁷

Novation 27% MedAssets 27% Premier 22% HealthTrust 11% Government 6% Amerinet 5% Other 2%

Customers - Integrated Delivery Networks (IDNs)

- An Integrated Delivery Network (IDN) is a network of facilities and providers that work together to offer a continuum of care to a specific geographic area or market
- Negotiate dollar and volume commitments with GPO contracted suppliers
- FPH Technology Acquisition Program (TAP)

Transition - Operations Since July 2015

- Staff Recruitment
- New Distribution Facility
- Increased Inventory
- Implemented IT Systems

Transition - Customers Since July 2015

- Established Distribution Contracts
- Established GPO Contracts
- Shipping Product
- Uninterrupted Supply to Hospitals

Transition - Sales Strategy

Strengthen Customer Relationships

Customer Education & Evaluations

Promote New Product Applications

Accelerate Customer Adoption Improve Care and Outcomes

Concluding Comments

Michael Daniell (Managing Director & CEO)

References

- 1. OECD Health data http://stats.oecd.org/index.aspx?DataSetCode=HEALTL_STAT
- 2. Grayson K. Vincent, Victoria A. Velkoff. The Next Four Decades. The Older Population in the United States: 2010 to 2050. US Census Bureau, 2010.
- 3. Cynthia L Ogden, Cheryl D Fryar et al. Mean Body Weight, Height, and Body Mass Index (BMI) 1960-2002. US Centers for Disease Control and Prevention, 2004.
- 4. Berhanu Alemayehu, Kenneth E Warner. The Lifetime Distribution of Health Care Costs. Health Serv Res. 2004 June; 39(3): 627-642
- 5. Franck Le Deu, Rajesh Parekh, Fanging Zhang, Gaobo Zhou. Healthcare in China: Entering uncharted waters. McKinsey & Company, 2012.
- 6. Estimates of Medical Device Spending in the United States, Donahoe, G and King, G, June 2014
- 7. Anand A Dalal, Laura Christensen, Fang Liu, and Aylin A Riedel. Direct costs of chronic obstructive pulmonary disease among managed care patients. Int J Chron Obstruct Pulmon Dis. 2010; 5: 241-249.
- 8. http://www.livingwithavent.com/pages.aspx?page=Basics/Who/Conditions
- 9. Hill N. Complications of noninvasive positive pressure ventilation. Resp Care 1997; 42(4): 432-442
- 10. American Association for Respiratory Care, Expert Panel Reference-Based Guidelines, Humidification during invasive and non invasive mechanical ventilation (2012), http://www.rcjournal.com/cpgs/pdf/12.05.0782.pdf
- 11. http://rc.rcjournal.com/content/57/6/900.full?sid=6314874a-c8fb-4ad8-9c5f-1f5f44d0a2f4
- 12. Mündel T, Feng S, Tatkov S, Schneider H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol (1985). 2013 Apr;114(8):1058-65. doi: 10.1152/japplphysiol.01308.2012. Epub 2013 Feb 14.
- 13. Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser, JF. Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients, British Journal of Anaesthesia, 2011 Dec; 107(6):998-1004.
- 14. Frat JP, Thille AW, Mercat A et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185-96
- 15. Maggiore SM, Idone FA, Vaschetto R et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190(3):282-8
- 16. Stéphan F, Barrucand B, Petit P et al. High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery: A Randomized Clinical Trial. JAMA. 2015;313(23):2331-9
- 17. G Hernandez, C Vaquero, P Gonzalez et al. High flow conditioned oxygen therapy for prevention of reintubation in critically ill patients at high risk for extubation failure: a multicenter randomised controlled trial. Intensive Care Medicine Experimental. 2015, 3(Suppl 1):A823
- 18. Wing R, James C, Maranda LS et al. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. *Pediatr Emerg Care*. 2012;28(11):1117-23
- 19. McKiernan C, Chua LC, Visintainer PF et al. High flow nasal cannulae therapy in infants with bronchiolitis. J Pediatr. 2010;156(4):634-8
- 20. Milési C, Baleine J, Matecki S et al. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med. 2013 Jun;39(6):1088-94
- 21. Manley BJ, Owen LS, Doyle LW et al. High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med. 2013;369(15):1425-33
- 22. Yoder BA, Stoddard RA, Li M, King J et a. Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates. Pediatrics. 2013;131(5):e1482-90
- 23. Collins CL, Holberton JR, Barfield C, Davis PG. A randomized controlled trial to compare heated humidified high-flow nasal cannulae with nasalcontinuous positive airway pressure postextubation in premature infants. J Pediatr. 2013;162(5):949-54

References

- 24. Saslow JG, Aghai ZH, Nakhla TA et al. Work of breathing using high-flow nasal cannula in preterm infants. J Perinatol. 2006;26(8):476-80
- 25. Gaunt KA, Spilman SK, Halub ME et al. High-Flow Nasal Cannula in a Mixed Adult ICU. Respir Care. 2015;60(10):1383-9
- 26. Hoyert DL, Xu JQ. Deaths: preliminary data for 2011. Natl Vital Stat Rep. 2012;61(6):1-65. Hyattsville, MD: National Center for Health Statistics. 2012.
- 27. Nicole M Kosacz, Antonello Punturieri et al. Chronic Obstructive Pulmonary Disease Among Adults -United States 2011. US Centers for Disease Control and Prevention, 2012.
- 28. R J Halbert, Sharon Isonaka, Dorothy George, Ahmar Iqbal. Interpreting COPD Prevalence Estimates. Chest. 2003; 123:5 1684 1692.
- 29. Naresh M. Punjabi. The Epidemiology of Adult Obstructive Sleep Apnea. Proceedings of the American Thoracic Society, Vol. 5, No. 2 (2008), pp. 136-143.
- 30. Storgaard L, Frystyk M, Hockey H et al. Number of exacerbations in COPD patients treated with nasal high flow heated and humidified oxygen. European Respiratory Journal Sep 2014, 44 (Suppl 58)
- 31. Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health. 2014 May;50(5):373-8
- 32. Bessell JR, Ludbrook G, Millard SH, Baxter PS, Ubhi SS, Maddern GJ. Humidified gas prevents hypothermia induced by laparoscopic insufflation: a randomized controlled study in a pig model. Surg Endosc. 1999 Feb;13(2):101-5. PubMed PMID: 9918606.
- 33. Billeter, A., Hohmann, S. F., Druen, D., Cannon, R & Polk, H. C. 2014. Unintentional perioperative hypothermia is associated with severe complications and high mortality in elective operations. *Surgery*, 56(5):1245-52.
- 34. Kurz, A., Sessler, D. I. & Lenhardt, R. 1996. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of wound infection and temperature group. New England Journal of Medicine, 334:1209–1215.
- 35. Matsuda, M., Oikawa, Y., Onodera, K. & Kasai, S. 2002. Effect of heated humidified gas during pneumoperitoneum. Paper presented at: SAGES 8th World Congress of Endoscopic Surgery, March 13-16; New York, USA.
- 36. Frey, J. M., Janson, M., Svanfeldt, M., Svenarud, P. & van der Linden, J. A. 2012. Local insufflation of warm, humidified CO2 increases open-wound and core temperature during open colon surgery: A randomized clinical trial. *Anesthesia Analgesia*. 115(5): 1204-1211.
- 37. Noor, N., Reynecke, D. Hendricks, J., Motson, R. & Arulampalam, T. 2015. Use of warmed humidified insufflation carbon dioxide to reduce surgical site infections in laparoscopic colorectal surgery: a cohort study. Poster presented at DDF, June 22 25, London
- 38. Persson, M., Svenarud, P., Flock, J. I. & van der Linden, J. 2005. Carbon dioxide inhibits the growth rate of Staphylococcus aureus at body temperature. Surgical Endoscopy, 19: 91-94
- 39. Persson, M. & van der Linden, J. 2004. Wound ventilation with carbon dioxide: A simple method to prevent direct airborne contamination during cardiac surgery? Journal of Hospital Infection, 56:131-36.
- 40. Marshall, J. K., Lindner, P., Tait, N., Maddocks, T., Riepsamen, A. & van der Linden, J. 2015. Intra-operative tissue oxygen tension is increased by local insufflation of humidified-warm CO2 during open abdominal surgery in a rat model. *PLoS ONE*, 10(4):e0122838. doi:10.1371/journal.pone.0122838
- 41. Cost-effectiveness Analysis of the Use of HumiGard in Patients Undergoing Open and Laparoscopic Colorectal Surgery in the UK, York Health Economics Consortium
- 42. Volz, J., Köster, S., Spacek, Z. & Paweletz, N. 1999. The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth. Surgical Endoscopy. 13:611-614
- 43. Carpinteri, S., Sampurno, S., Bernardi, M., Germann, M., Malaterre, J., Heriot. A., Chambers, B., Mutsaers, S., Lynch, A. C. & Ramsay, R. G. 2015. Peritoneal tumorigenesis and inflammation are ameliorated by humidified-warm carbon dioxide insufflation in the mouse. *Annals of Surgical Oncology*. doi: 10.1245/s10434-015-4508-1
- 44. Sajid, M. S., Mallick, A. S., Rimpel, J., Bokari, S., Cheek, E. & Baig, M. 2008. Effect of heated and humidified carbon dioxide on patients after laparoscopic procedures: A metaanalysis. Surgical Laparoscopy Endoscopy Percutaneous Techniques, 18(6):539-546.

References

- 45. Binda, M. M., Corona, R., Amant, F. & Koninckx, P. R. 2014. Conditioning of the abdominal cavity reduces tumour implantation in a laparoscopic mouse model. Surgery Today, 44(7):1328-35. doi: 10.1007/s00595-014-0832-5.
- 46. National Institute for Health and Clinical Excellence (NICE). 2008. Costing statement: Surgical site infection: prevention and treatment of surgical site infection.
- 47. National Institute for Health and Clinical Excellence (NICE). 2013. NICE support for commissioning for surgical site infection.
- 48. Mason, S. E., Kinross, J. M., Reynecke, D., Hendricks, J. & Arulampalam, T. H. 2015. Cost-effectiveness of warm humidified CO2 to reduce surgical site infections in laparoscopic colorectal surgery: a cohort study. Poster presented at DDF, June 22 25, London
- 49. OECD Health data http://stats.oecd.org/index.aspx?DataSetCode=HEALTL_STAT
- 50. Centers for Medicare & Medicaid Services, NHE Projections 2014-2024 https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nationalhealthaccountsprojected.htmlSource
- 51. US Department of Health and Human Services: http://www.cdc.gov/nchs/data/hus/hus14.pdf#102
- 52. US Lifeline Major Accounts Exchange (MAX)
- 53. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/hospital-value-based-purchasing/index.html?redirect=/Hospital-Value-Based-Purchasing/
- 54. The State of Obesity: http://stateofobesity.org/obesity-rates-trends-overview/: Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of Obesity among Adults: United States, 2011-2012. NCHS Data Brief, 131, 2013
- 55. American Journal of Preventative Medicine: http://www.ajpmonline.org/article/S0749-3797(12)00146-8/abstract
- 56. Source US Census Bureau: https://www.census.gov/prod/2014pubs/p25-1140.pdf
- 57. Annual Contract Volume (ACV) based on The MAX 2013 data

Glossary

BiPAP	Bilevel Positive Airway Pressure – used during noninvasive ventilation
COPD	Chronic Obstructive Pulmonary Disease
СРАР	Continuous Positive Airway Pressure
DME	Durable Medical Equipment provider
ED	Emergency Department
FDA	United States Food and Drug Administration
HDU	High Dependency Unit
HFNC	High Flow Nasal Cannula
HME	Heat and Moisture Exchanger
ICU	Intensive Care Unit
IV	Invasive Ventilation
KOL	Key Opinion Leaders
LTOT	Long Term Oxygen Therapy

New apps	New applications in our RAC product group outside of invasive ventilation (see slide 10)
NHF	Nasal high flow therapy
NICU	Neonatal Intensive Care Unit
NIV	Noninvasive ventilation
OSA	Obstructive Sleep Apnea
PICU	Paediatric Intensive Care Unit
RAC	Respiratory & Acute Care
RCT	Randomised Controlled Trial
RN	Respiratory Nurse
RT	Respiratory Therapist
SICU	Surgical Intensive Care Unit

