F&P 550 System

The benefits of heated humidification for patients with bypassed airways

NORMAL ADULT AIRWAY

The respiratory system is a highly balanced mechanism reliant on humidity.¹ As air travels down the airway during normal inspiration, heat and moisture are drawn from the airway mucosa until the gas reaches 37 °C, 44 mg/L H₂O close to the carina.^{2,3}

BYPASSED AIRWAYS

When the upper airway is bypassed, e.g. with an endotracheal or tracheostomy tube, the upper airway's humidifying surfaces and filtering mechanisms are also bypassed, which compromises the protective cough, gag and sneeze reflexes.4

Complications associated with the failure to heat and humidify inspired gases for patients with bypassed airways include thickening of secretions, drying of the airway, airway obstruction, bronchospasm and artificial airway tube occlusion.⁵

EFFICIENT GAS EXCHANGE AND VENTILATION

Secretion clearance is fundamental to limiting airway occlusion and promoting efficient ventilation and gas exchange. Humidification is integral to secretion management in mechanically ventilated patients⁶ and it assists with secretion mobilization and removal.^{6,7}

Insufficient respiratory humidification can result in diminished cilia activity, decreased cilia beat frequency, ciliary destruction and cellular damage. This can lead to increased mucus viscosity and impaired mucociliary clearance, which can cause secretion retention, followed by airway occlusion and atelectasis.5

NATURAL DEFENSE MECHANISMS IN THE AIRWAY

It is important for the airway mucosa to retain a balance of heat and moisture to maintain a fully functioning mucociliary transport system and an efficient line of defense. When mucus transport is inadequate, mucus can turn into a risk factor instead of a defense mechanism. Therefore, humidification^{5,8,9} and as-needed suctioning are the foundations of secretion management in mechanically ventilated patients.⁶ Heated respiratory humidifiers are able to deliver a higher level of heat and humidity than heat and moisture exchangers (HMEs). Accordingly, they are the humidification method of choice for some patients.^{10,7}

Persistent airway inflammation and mucus retention are also clinical problems in patients with chronic respiratory diseases including obstructive pulmonary disease and bronchiectasis. These patients commonly have clinical care provided in a homecare setting where humidity therapy can be used to improve secretion clearance. 11,12

Subdued display lighting and indicators

Display lighting and indicators only visible during setup or alarm states

Setup indicator diagram and

Setup issues or alarm states are indicated by audio alarms and lighted areas on a simplified

Preset temperature output

There is no button to change therapy mode. The mode is changed using the default menu, the caregiver or the patient cannot change the mode by mistake.

Color-coded sockets

The colors of the sockets match those of the relevant connectors

Accessories

A Heater-wire Adapter provides power to heated circuits and the Temperature and Flow Probe provides feedback from the humidification chamber and circuit

Heater-wire condensation management

Able to be used with select Fisher & Paykel Healthcare RT-series

Auto-feed humidification chamber

Automatic refilling from a water bag and a dual-float mechanism to maintain a consistent water level

2 | PRODUCT OVERVIEW PRODUCT OVERVIEW | 3

HC550 HUMIDIFIER

Supply voltage	115 V~
Frequency	50/60 Hz
Power input	220 VA
Flow range	< 40 L/min invasive mode < 120 L/min noninvasive mode
Dimensions (without chamber)	140 x 173 x 135 mm (5.5" x 6.8" x 5.3")
Heater-plate capacity	150 W at nominal mains voltage
Heater-plate thermal cutout	118 ± 6 °C

Heater-wire supply	22 ± 5 V~, 60 W
Weight (without chamber)	2.8 kg
Recommended temperature	Ambient temperature range 20-26 °C
Display temperature range	10-70 °C, accuracy: ± 0.3 °C (in 25-45 °C range) Not visible during normal operation
Warm-up time	< 30 minutes

REFERENCES

1. Williams, R., Rankin, N., Smith, T., Galler, D. & Seakins, P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 24, 1920–1929 (1996). 2. Ingelstedt, S. Studies on the conditioning of air in the respiratory tract. Acta Oto-Laryngologica Suppl. 130 3–80 (1956). 3. Branson, R. Preventing Moisture Loss From Intubated Patients. Clin. Pulm. Med. 7, 187–198 (2000). 4. Pierce, R. J. & Worsnop, C. J. Upper airway function and dysfunction in respiration. Clin. Exp. Pharmacol. Physiol. 26, 1–10 (1999). 5. Branson, R. D. The effects of inadequate humidity, Respir. Care Clin. N. Am. 4, 199–214 (1998). 6. Branson, R. D. Secretion management in the mechanically ventilated patient. Respir. Care 52, 1327–1328 (2007). 7. Restrepo, R. D. & Walsh, B. K. Humidification during invasive and noninvasive mechanical ventilation: 2012. Respir Care 57, 782–788 (2012). 8. Kelly, M., Gillies, D., Todd, D. A. & Lockwood, C. Heated humidification versus heat and moisture exchangers for ventilated adults and children. Anesth. Analg. 111, 1072 (2010). 9. Rathgeber, J. Devices used to humidify respired gases. Respir. Care Clin. N. Am. 12, 165–182 (2006). 10. AARC clinical practice guideline. Humidification during mechanical ventilation. American Association for Respiratory Care. Respir. Care 37, 887–890 (1992). 11. Rea, H. et al. The clinical utility of long-term humidification therapy in chronic airway disease. Respir. Med. 104, 525–533 (2010). 12. Hasani, A. et al. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chron. Respir. Dis. 5, 81–86 (2008).

